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The Method of Lines Applied to Planar
Transmission Lines in Circular and

Elliptical Waveguides

KE WU, MEMBER, IEEE, AND RUEDIGER VAHLDIECK, SENIOR MEMBER, IEEE

Alr$tracf —The method of fines (MOL) is utilized to analyze a class of

planar transmission lines with circular or semicircular/elliptical metaflic

shieldhg. The paper shows how the generaf MOL principles can he

modified such that curved boundary structures can be included. Dispersion

diagrams tie presented for microstrip and slottirre structures with curved

metallic shielding as well as for their suspended counterparts in circular

and elliptical waveguides.

I. INTRODUCTION

T HE METHOD of Lines (MOL) is a semianalytical

method well suited to the characterization of the

dispersive properties and discontinuities of a wide range of

transmission lines. The method, originally used for bound-

ary value problems in physics, was further developed by

Pregla and coworkers [3]-[6] and other researchers in this

field (i.e., [7]-[9]) for application to various forms of

waveguiding structures. The advantage of this method in

solving the Helmholtz equation for the structure to be

analyzed is that it requires cross-sectional discretization in

only one direction while the other direction can be treated

analytically. There are no specially suited basis functions

necessary. The problem of relative convergence is avoided

and the MOL can easily be applied to irregularly shaped

transmission lines which were previously analyzable only

by such methods as the finite element method (FEM) and

the transmission line method (TLM).

In previous publications the MOL has been applied to

structures on isotropic and anisotropic [7] substrate mate-

rial covered by rectangular metallic shielding. In the

present paper it is shown that the method is equally ap-

plicable to transmission line structures with circular or

semicircular/elliptical metallic boundaries. This requires a

modified formulation of the method which is then applied

to an interesting but relatively unstudied form of quasi-

planar transmission line: shielded microstrip and slotline

as well as their suspended counterparts in circular or

elliptical waveguides. Quasi-planar transmission lines of

this form are potentially advantageous over structures in

rectangular waveguides because generally circular wave-
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guides provide a better control of field polarization, which

is useful in particular for phase shifters, traveling-wave

isolators, antenna feeds, etc. Furthermore, while increasing

attenuation ifi rectangular waveguides at millimeter-wave

frequencies may be prohibitive for certain applications,

oversized circular waveguides are a potential alternative.

The usefulness of a bilateral finline in ii circular watieguide

as applied to a wide-tiandwidth coupler was described as

early as 1955 by Robertson [1]. Since then, however, the

possibility of integrating planar transmission lines into

circular or elliptical waveguides has been widely neglected.

As a consequence, there are almost no data available in the

open literature describing the propagation characteristics

in this type of hybrid transmission line.

The propagation characteristics of a bilateral finline in a

circular waveguide have been studied recently by Costache

and Hoefer [2] using a finite element method. But in this

approach, large systems of equations must be solved di-

rectly, which requires considerable memory space and

computing power. Using the MOL, a discrete orthogonal

transform is applied and the problem is essentially solved

analytically in the transformed domain. This procedure

reduces the matrix sizes in the original domain without

affecting the accuracy and leads to a significantly faster

computer algorithm which is more efficient with regard to

memory space and is suitable for personal computers. To

verify our theoretical results we have made a comparison

with the analytical solution for the circular hollow wave-

guide as well as with the numerical data for the bilateral

finline published in [2]. In both cases the agreement is

excellent.

IL THEORY

By modifying the method of lines to curved boundaries,

we are able to rigorously analyze planar transmission lines

in circular and elliptical waveguides. The following will

give a brief review of the essential steps in the MOL as far

as it is necessary to understand the modifications made.

The cross-sectional view of the type of quasi-planar

transmission line to be analyzed in this paper is shown in

Fig. 1. Any attempt to calculate the propagation character-

istics with the mode matching technique or the spectral-

domain method would lead to Bessel functions in case of

the circular shield or to Mathieu functions in case of the
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open

more complicated structures is straightforward. The elec-

tromagnetic field in each homogeneous subregion is de-

scribed by two scalar potential functions V’ and Y h which

both satisfy the Helmholtz equation. Initially the assumpt-

ion is also made that the boundary conditions

are satisfied along the curved metallic enclosure at the

symmetry walls. It will be shown IIater under which condi-

tions this is true. All field comporlents are found from

1(2)

the cross

–VX(WheF)i= +--VXV X(*ee2)
J(JX

W’w 1
metal ground plane

1
ti=vx(l%’)+ —VXVX(VheZ).

jtop

To solve this hybri&field problem numerically,

section is discretized in the x direction with an equi-mesh-

width h. The discretization lines of Th are shifted by h/2

with respect to the lines of T’. Thus, the lateral boundi~ry

conditions can easily be fitted and the discretization errors

are reduced significantly. For symmetrical structures the

first discretization line for the electric or magnetic poten-

tial starts at the electric or magnetic wall, respectively (Fig.

2), which corresponds to a Dirichlet-Dirichlet (D-D) or

Neumann-Dirichlet (N–D) boundary condition. The mesh

size h can be obtained by taking two conditions into

account simultaneously: a) the lateral boundary conditions

at x =0, y= [O, b] and x = a, y =0 (Fig. 2) and b) the

Fig. 1. Quasi-planar transmission lines in circular\elliptical, closed,
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edge conditions at x = w/2, y = O.

From the edge condition we obl,ain

w
h=

2(N; +0.25) –0.58,~
(3)

(4)(rsem= ; electric wall

magnetic wall

[(.-:]

(5)+i’l-
Fig. 2. Cross section of the semiopen stripline in an elliptical enclosure.
For the following structures, c,= 2.22 and substrate thickness = 254 pm. where N;’ is the total number of e lines on the strip and

N&d is the total number of e lines over the cross section.

By choosing the number of lines on the strip the total

number of e lines over the cross section is automatically

determined. All potential functions at the discrete points

can be arranged in an ordered vector form. It should be

noted that the resulting vectors and matrices with the

superscript e or h are of order N’ or Nh, respectively. The

finite difference expression of the first and second deriva-

tives of W h tid T e can then be written in matrix form:

elliptical shield. In both cases it is difficult or impossible to

match the respective eigenfunctions at the interface to the

planar circuit. In the method of lines this problem can be

avoided by discretizing the entire cross section in one

direction such that the discretization lines are perpendicu-

lar to the planar circuit regardless of the location of the

housing walls. In a rectangular waveguide the lines are

either perpendicular or tangential to the metallic enclosure.

In a circular housing there are only two locations at which

this is the case. Between the two locations the boundary

conditions must follow the curvature of the housing de-

scribed by the function

(6)

(7)
-2 ..2

(1)

(8)
where a and b are the semiaxis lengths in the x and y

directions in Fig. 2. To explain the principal steps in the

MOL the symmetrical semicircular/elliptical stripline is

chosen as shown in Fig. 2. An extension of the method to
(9)
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Now the x-dependent variables are discretized and are

available in vector form. They automatically include the

lateral boundary and edge conditions.

Substituting the matrix expressions (8), (9) into the

Hehnholtz equations, one-dimensional differential matrix

equations are obtained in the discrete domain in which all

elements are coupled to each other:

d2[’1’]

[

[DX]’[DX]

d; – h2 1
+pz–kz [W] =0 (lo)

[

d2[W’] [DX][DX]’

d; – h2 1
+/32-/2 [X@]=0. (11)

The second-order operators [DX]’[DX] and [DX][DX]’ are

real, symmetric, and tridiagonal matrices. Thus, they can

be transformed by a simple orthogonal transformation into

diagonal form with real positive and distinct eigenvalues:

[Te]f[Dx]’[Dx][T’] = [x’] (12)

[T’] ’[ DX][DX]’[T’] = [A’]. (13)

[T’] and [Z’h] are the matrices of eigenvectors which are

available in analytical form for equidistant discretization

[5]. It can be proved that the bidiagonal first-order opera-

tor [ Dx] is transferred into quasi-diagonal or quasi-subdi-

agonal form by the following transformation:

[T’] ’[DX][T’] = [~1 (14)

[T’] ’[ Dx]’[7’h]= [8]’. (15)

Based upon (12) and (13), the following relationship holds:

[A’] = [a]’[a] (16)

[k~] = [8][8]’. (17)

With the above decoupling procedure the partial differen-

tial equations can now be written as a system of ordinary

differential equations:

(18)

with [1] being the identity matrix and [+”’] = [2”” ~][~e’ ~].

The general solution of (18) can be written as a set of

inhomogeneous transmission line wave equations in dis-

crete form, assuming that the lines T” h pass through a

homogeneous dielectric layer from y = yl to y = y2:

[

coshYe’h(Y2-Yl)
.

Y “hsinhY’’fi(Y2- .Yl)

“[[-1)
[+1
d+ .
dy M

1
-T-Z sinhye’h(y, - YJ
Y’

coshye’h(y2 – yl) )

(20)

The matrix equation (20) is a function of y at discrete

points in the x direction. The boundary conditions, once

they are satisfied at one location, are assumed to be

satisfied automatically at each x coordinate along the

boundary. However, this is only true in a rectangular

waveguide housing. For a curved waveguide housing, the

field components tangential (E,) and normal (H.) to the

boundary are composed of vector components which vary

depending on the x location. For example, at x = O and

y = b (Fig. 2), the Ex and HY components become zero by

setting @e and d@h/dY equal to zero. Moving along the

boundary, both vectors increase to a maximum value at

x = u and y = O (Fig. 2). This variation in the boundary

conditions must be incorporated into the discretization

procedure. This can be done by rewriting (1) in terms of

the tangential and normal unity vectors (see Fig. 2) in the

following way:

(21)

Hdx
—i+ —dY’

tin =
Y

m

2“
(22)

1+ :
Y

If we now apply the boundary conditions of zero tangen-

tial electric field and zero normal magnetic field in the

original domain, we obtain two matrix equations with

inner products at each discrete point

[1i= =o.

(23)

(24)

(25)

Even though the T’ lines are shifted with respect to the

Th lines in the space domain, the derivative of the housing

function dY/dx holds at every W’ and Th line. The field

components in (23)–(25) are derived from (2) and the

following relationship can be obtained in the original

domain:

[W]=o (26)

(27)

Transforming (26) and (27) into the transform domain

yields

[+’]=0 (28)
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Note that the derivative matrix [u’Y/dX] is equally related

to e as well as to h lines because of the full spatial inner

product and regardless of the e- and h-line shift in the

discrete domain.

It follows from (28) and (29) that [@e] remains always

zero for all kinds of curved boundaries since [+’] is associ-

ated with the EZ field component. The quantity [d@/dY]

becomes zero if dY/dX = O. It should be noted that the

vector form of [ dI#I~/dY] depends on the lateral boundary

conditions (at x = O, y = [0, b] and x = a, y = O) and can

also implicitly be found in [ T“’] and [8 l]. The latter

means that elements of the vector [ d#/dY] may be cou-

pled to each other. In the limiting case (noncurved or

piecewise-straight waveguide), [d@~/dY] equals zero,

It is worth mentioning that there are two singular points

at x = + a where dY/dx becomes infinity. This results

from the fact that d@h/dY at both sides tends to approach

infinity, which requires some precautions in the numerical

procedure.

From the transmission line equation (20), considering

the boundary conditions along the curved enclosure as well

as the continuity condition at the interface at y = O, an

inhomogeneous matrix equation is obtained:

The s~bmatrices [~XX] and [~ZZ] are diagonal, and [~X.]

and [2=X] are diagonal or subdiagonal, depending on the

lateral conditions in the transformed domain.

After transformation back into the original domain [5], a

considerably reduced matrix equation is obtained by set-

ting the tangential field components at the metallic strip to

zero:

()[Jx] =0

‘Z(B)] [JZ] -
(31)

From here the propagation constants are found for all

zeros of det { Z(B)}.

In general, the number of lines necessary to accurately

analyze a given cross section depends on the finest details

to be resolved in the structure. Therefore, in the following

analysis the number of lines is determined by the strip/slot

dimensions. It was found that for a strip-type transmission

line a minimum of two V~ lines and one V’ line across the

strip width was necessary and vice versa for slot-type

transmission lines.

III. NU~RICAL RESULTS

In order to examine the reliability and performance of

this modified approach, we have analyzed rnicrostrip and
slotline structures in circular/elliptical waveguide hous-

ings. We have first analyzed the standard circular wave-

guide (WC-25, radius = 3.175 mm, J(TEJ = 27.686 GHz)

and compared the numerical data with analytical results. It

was found that there’ is perfect agreement between the

numerical and the analytical solution of the fundamental
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Fig. 4. Dispersion of a slodine in a circular semiopen enclosure.

mode dispersion characteristic over the frequency range of

interest.

Then a comparison was made between a unilateral fin-

line in a square waveguide and a circular waveguide. lk is

clear from Fig. 3 that the monomode range in a circular

housing greatly exceeds that in the square waveguide. Even

the monomode range in a rectangular waveguide is less

than in the circular case since the second higher order

mode starts to propagate at 42 GIHz (Ku-band) whereas in

the circular guide the second mode cutoff frequency i:s at

47 GHz. For the circular waveguide the modes shown in

Fig. 3 are obtained from electric wall symmetry. The HEI

mode can thus be traced back to the TEII mode in the

empty waveguide. As expected, the HE1 mode is mainly

confined within the slot region of the guide and therefore

is strongly influenced by the slot width. For magnetic wall

symmetry no further modes were found up to 50 GHz.

This is in contrast to the results in a semicircular wave-

guide enclosure when the ground plane is removed (serni-

open). For this case Fig.4 shows three fundamental modes

close together having a cutoff frequency around 15 GHz.
Two of the modes show magnetic wall symmetry and one
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Fig. 5. Propagation characteristics in suspended and grounded stripline.

electric wall symmetry. The modes with magnetic wall

symmetry are virtually insensitive to variations in the slot

width whereby the third mode (electric wall symmetry)

cutoff frequency is reduced when the slot width decreases.

This indicates that this mode originates from the TEII

mode of the empty circular guide. For comparison, the

unilateral finline in a square waveguide with semiopen

boundary shows also three fundamental modes with the

same magnetic wall and electric wall symmetry [10]. Fig. 5

shows the suspended microstrip in a circular metallic en-

closure (WC25) and its grounded counterpart in a semicir-

cular metallic enclosure. As expected, the quasi-TEM mode

of the grounded structure is much higher, increasing fur-

ther for wider strip width. This is in contrast to the

suspended microstrip line, where the propagation constant

decreases for wider strip width. It should also be noted

that the higher order modes in the suspended case start to

propagate at much higher frequencies than for the same

transmission line in a rectangular waveguide. For instance,

in a Ku-band housing the first waveguide mode starts to

propagate around 20 GHz (for the planar structure sus-

pended in the E plane as well as the H plane) and in the

circular housing around 32 GHz. Fig. 6 shows even and

odd modes of a coplanar transmission line in a circular

and semicircular waveguide versus the slot width d. It is

interesting to note that for the semicircular case and the

ground plane removed the odd mode shows a minimum

c.f ~ at d =1.5 mm. A comparative analysis for circular and

elliptical waveguide enclosures is shown in Fig. 7 for a
coplanar transmission line. It is obvious that the quasi-

TEM mode, the even mode, remains relatively undisturbed

by changing from one focal point into two (elliptical

waveguide), regardless of whether this change occurs in the

y or the x direction. The cutoff frequencies of higher order

modes, however, move up towards higher frequencies in

the elliptical waveguide. The interesting point is that by

changing b from 3.175 mm to b =1.905 mm the occur-

~aew mw

W -25

: IWl d

W@25
open

2.5

1:
I ew ‘ mw

v

2.0- “f
~ SEMI OPEN

f

1.5 CLOSED TJAVEGUIDE I

// .X.’X

. . . ..!.’X.. x,...... -. ---------- . . . . . . .. X..? ”.....
1.0 ODD/

‘x.
‘x,

\ ~~”

x, ,x’

0.5

1

‘x., .x W = 0.25 IDID
X..x. x

0.()) 1

2.0 2.5 3.0

d(m)

Fig. 6. Propagation constant m coplanar transmission lines shielded by
closed and semiopen waveguides.

: ax b =3.175x3.175 mm)
2.0

. . . . . .

1

[: ax b=3.175xl.905 mm)
------ : a xb = 1.905 x 3.175 mm)
-, ----- .: [a xb = 1.905 x 1.905 mm)

~ 1.

f

1.

0.

5-

@[

EVENMODES

lw]2dlwl

o
,-

WC-25 /:.-””,,, ,
/:.

/ ,.

5
/(,, ,/

/ . ,/
/

/’,. ,,
/ ,

/: /’ ODD

/ ,
/’ ,/

/:

0.0
/

,
051015202530 3540

f(GHz)

Fig. 7. Effect of circular and elliptical waveguide shapes on mode
propagation in a coplanar transmission line.

rence of the first waveguide mode can be shifted 5 GHz

towards higher frequencies. Fig. 8 shows that there is no

noticeable effect on the quasi-TEM mode at higher fre-

quencies in a suspended stripline. Only at lower frequen-

cies does the difference between circular and elliptical

housings become visible.

IV. CONCLUSION

This paper introduced a modified approach to the

method of lines to allow the treatment of curved boundary

value problems. For the first time the MOL has been

applied to the analysis of a variety of quasi-planar trans-

mission lines in circular/elliptical and semicircular wave-

guides with partially open boundaries. Results have shown
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Fig. 8. Dispersion of the quasi-TEM mode in a circular (a= b =
3.175 mm) ahd an elliptical (a = 4.17 mm, b = 3.175 mm) waveguide.

that some of the structures have potential applications at

millimeter-wave frequencies because losses in circular

waveguide enclosures are generally lower than in rectangu-

lar waveguides. A more detailed study including losses of

different modes, as well as the characteristic impedance, is

currently in progress. Our experience so far has shown that

the method of lines is numerically more efficient than

other methods applicable to the same problem and that, as

evidenced by this paper, odd shaped bound~ value prob-

lems can be handled quite easily.
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