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Abstract —The method of lines (MOL) is utilized to analyze a class of
planar transmission lines with circular or semicircular/elliptical metallic
shielding. The paper shows how the general MOL principles can be
modified such that curved boundary structures can be included. Dispersion
diagrams are presented for microstrip and slotline structures with curved
metallic shielding as well as for their suspended counterparts in circular
and elliptical waveguides.

I. INTRODUCTION

HE METHOD of Lines (MOL) is a semianalytical

method well suited to the characterization of the
dispersive properties and discontinuities of a wide range of
transmission lines. The method, originally used for bound-
ary value problems in physics, was further developed by
Pregla and coworkers [3]-[6] and other researchers in this
field (i.e., [7]-[9]) for application to various forms of
waveguiding structures. The advantage of this method in
solving the Helmholtz equation for the structure to be
analyzed is that it requires cross-sectional discretization in
only one direction while the other direction can be treated
analytically. There are no specially suited basis functions
necessary. The problem of relative convergence is avoided
and the MOL can easily be applied to irregularly shaped
transmission lines which were previously analyzable only
by such methods as the finite element method (FEM) and
the transmission line method (TLM).

In previous publications the MOL has been applied to
structures on isotropic and anisotropic [7] substrate mate-
rial covered by rectangular metallic shielding. In the
present paper it is shown that the method is equally ap-
plicable to transmission line structures with circular or
semicircular /elliptical metallic boundaries. This requires a
modified formulation of the method which is then applied
to an interesting but relatively unstudied form of quasi-
planar transmission line: shielded microstrip and slotline
as well as their suspended counterparts in circular or
elliptical waveguides. Quasi-planar transmission lines of
this form are potentially advantageous over structures in
rectangular waveguides because generally circular wave-
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guides provide a better control of field polarization, which
is useful in particular for phase shifters, traveling-wave
isolators, antenna feeds, etc. Furthermore, while increasing
attenuation in rectangular waveguides at millimeter-wave
frequencies may be prohibitive for certain applications,
oversized circular wavéguides are a potential alternative.
The usefulness of a bilateral finline in 4 circular waveguide
as applied to a wide-bandwidth coupler was described as
early as 1955 by Robertson [1]. Since then, however, the
possibility of integrating planar transmission lines into
circular or elliptical waveguides has been widely neglected.
As a consequence, there are almost no data available in the
open literature describing the propagation characterlstlcs
in this type of hybrid transmission line.

The propagation characteristics of a bilateral finline in a
circular waveguide have been studied recently by Costache
and Hoefer [2] using a finite element method. But in this
approach, large systems of equations must be solved di-
rectly, which requires considerable memory space and
computing power. Using the MOL, a discrete orthogonal
transform is applied and the problem is essentially solved
analytically in the transformed domain. This procedure
reduces the matrix sizes in the original domain without
affecting the accuracy and leads to a significantly faster
computer algorithm which is more efficient with regard to
memory space and is suitable for personal computers. To
verify our theoretical results we have made a comparison
with the analytical solution for the circular hollow wave-
guide as well as with the numerical data for the bilateral
finline published in [2]. In both cases the agreement is
excellent.

II. THEORY

By modifying the method of lines to curved boundaries,
we are able to rigorously analyze planar transmission lines
in circular and elliptical waveguides. The following will
give a brief review of the essential steps in the MOL as far
as it is necessary to understand the modifications made.

The cross-sectional view of the type of quasi-planar
transmission line to be analyzed in this paper is shown in
Fig. 1. Any attempt to calculate the propagation character-
istics with the mode matching technique or the spectral-
domain method would lead to Bessel functions in case of
the circular shield or to Mathieu functions in case of the
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Fig. 1. Quasi-planar transmission lines in circular/elliptical, closed,
and semiopen waveguides.
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Fig. 2. Cross section of the semiopen stripline in an elliptical enclosure,
For the following structures, ¢, = 2.22 and substrate thickness = 254 pm.

elliptical shield. In both cases it is difficult or impossible to
match the respective eigenfunctions at the interface to the
planar circuit. In the method of lines this problem can be
avoided by discretizing the entire cross section in one
direction such that the discretization lines are perpendicu-
lar to the planar circuit regardless of the location of the
housing walls. In a rectangular waveguide the lines are
either perpendicular or tangential to the metallic enclosure.
In a circular housing there are only two locations at which
this is the case. Between the two locations the boundary
conditions must follow the curvature of the housing de-
scribed by the function .
2 2

x>y
St+=1
(12

b2 (1)
where g and b are the semiaxis lengths in the x and y
directions in Fig. 2. To explain the principal steps in the
MOL the symmetrical semicircular/elliptical stripline is
chosen as shown in Fig. 2. An extension of the method to
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more complicated structures is straightforward. The elec-
tromagnetic field in each homogenous subregion is de-
scribed by two scalar potential functions ¥ and ¥” which
both satisfy the Helmholtz equation. Initially the assump-
tion is also made that the boundary conditions
are satisfied along the curved metallic enclosure at the
symmetry walls. It will be shown later under which condi-
tions this is true. All field components are found from

1
E=—vXxvx(¥%z)—vx (V)
Jjwe

(2)

To solve this hybrid-field problem numerically, the cross
section is discretized in the x direction with an equi-mesh-
width #. The discretization lines of ¥" are shifted by 4 /2
with respect to the lines of ¥¢. Thus, the lateral boundary
conditions can easily be fitted and the discretization errors
are reduced significantly. For symmetrical structures the
first discretization line for the electric or magnetic poten-
tial starts at the electric or magnetic wall, respectively (Fig.
2), which corresponds to a Dirichlet-Dirichlet (D-D) or
Neumann-Dirichlet (N-D) boundary condition. The mesh
size h can be obtained by taking two conditions into
account simultaneously: a) the lateral boundary conditions
at x=0, y=[0,»0] and x=a, y=0 (Fig. 2) and b) the
edge conditions at x =w/2, y=0.

From the edge condition we obtain

w

N 1
H=vXx(¥%7)+ —vXxvx (V7).
Jow

h= 3
2(Ng +0.25)—0.58,,, 3)
_ {0 electric wall /
Bem = { 1 magnetic wall (4)
w
o
Niya = N +int | -5 -0.75 (5)

where N is the total number of e lines on the strip and
N¢ . 1s the total number of e lines over the cross section.
By choosing the number of lines on the strip the total
number of e lines over the cross section is automatically
determined. All potential functions at the discrete points
can be arranged in an ordered vector form. It should be
noted that the resulting vectors and matrices with the
superscript e or & are of order N° or N*, respectively. The
finite difference expression of the first and second deriva-
tives of ¥* and ¥° can then be written in matrix form:

3;;9 B [IZX] ] (6)
_3;:11_) [D] [ 7
3;;3.9 L [Dx]h’Z[Dx] [v¢] (8)
agh __In, ]h[L ]’ [¥4]. (9)
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Now the x-dependent variables are discretized and are
available in vector form. They automatically include the
lateral boundary and edge conditions.

Substituting the matrix expressions (8), (9) into the
Helmbholtz equations, one-dimensional differential matrix
equations are obtained in the discrete domain in which all
elements are coupled to each other:

ol oo, o
d_f - 2 +B%2-k*|[¥°]=0 (10)
a1 [ o
| +B2—k*{[¥"]=0. (11)

The second-order operators [D,]'[D,] and [D,][D,]" are
real, symmetric, and tridiagonal matrices. Thus, they can
be transformed by a simple orthogonal transformation into
diagonal form with real positive and distinct eigenvalues:

[T<]'[D) [ D7) = [¥] (12)
[T'1[ DD [T"] = [¥]. (13)
[T¢] and [T"] are the matrices of eigenvectors which are
available in analytical form for equidistant discretization
[5]. It can be proved that the bidiagonal first-order opera-

tor [D,] is transferred into quasi-diagonal or quasi-subdi-
agonal form by the following transformation:

[T*)[D,][T°] = [8] (14)

[T<)'[DJ[T"] =[8]" (15)

Based upon (12) and (13), the following relationship holds:
[x]=1[8][8] (16)

[x]=1[3][s]". (17)

With the above decoupling procedure the partial differen-

tial equations can now be written as a system of ordinary
differential equations:

d2[¢e,h]

22 [k [¢"] = [0] (18)

[yl = et (B2 k)T] (19)

with [I] being the identity matrix and [¢**] = [T**][¥**].
The general solution of (18) can be written as a set of
inhomogeneous transmission line wave equations in dis-
crete form, assuming that the lines ¥*” pass through a
homogeneous dielectric layer from y = y; to y = y,:

[d¢]
i

coshy®"(y, — y1)
et sinhy® " (y, = 1)

[¢]

1| .
@/,

1
s sinhy®*(y, - y;)

COShYe’h(yz - J’1)

(20)
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The matrix equation (20) is a function of y at discrete
points in the x direction. The boundary conditions, once
they are satisfied at one location, are assumed to be
satisfied automatically at each x coordinate along the
boundary. However, this is only true in a rectangular
waveguide housing. For a curved waveguide housing, the
field components tangential (E,) and normal (H,) to the
boundary are composed of vector components which vary
depending on the x location. For example, at x =0 and
y=b (Fig. 2), the E, and H, components become zero by
setting ¢° and dq&”/dy equal to zero. Moving along the
boundary, both vectors increase to a maximum value at
x=a and y=0 (Fig. 2). This variation in the boundary
conditions must be incorporated into the discretization
procedure. This can be done by rewriting (1) in terms of
the tangential and normal unity vectors (see Fig. 2) in the
following way:

d

)?+d—y)7
-— (21)
1+| -2
dx
- dx -
—x+t— |y
= — (22)
1+ =
dy

If we now apply the boundary conditions of zero tangen-
tial electric field and zero normal magnetic field in the
original domain, we obtain two matrix equations with
inner products at each discrete point

G- | E.+E,| =0 (23)
- [B,+ 8] =0 (24)
[E]=0 (25)

Even though the ¥¢ lines are shifted with respect to the
¥* lines in the space domain, the derivative of the housing
function d, /d, holds at every ¥° and ¥* line. The field
components in (23)-(25) are derived from (2) and the
following relationship can be obtained in the original
domain:

[¥e]=0

[d\lf”] [dy] [d\I"’]
d, d, d, |
Transforming (26) and (27) into the transform domain
yields

(26)

(27)
[6]=0 (28)
d¢h ! d_v h h h

ld_]=[z~ P O T R

¥y



WU AND VAHLDIECK: METHOD OF LINES APPLIED TO PLANAR TRANSMISSION LINES

Note that the derivative matrix [d,/d,] is equally related
to e as well as to A lines because of the full spatial inner
product and regardless of the e- and A-line shift in the
discrete domain.

It follows from (28) and (29) that [¢°] remains always
zero for all kinds of curved boundaries since [¢°] is associ-
ated with the E, field component. The quantity [d¢"/d,]
becomes zero if d,/d,=0. It should be noted that the
vector form of [dq&”/dy] depends on the lateral boundary
conditions (at x=0, y=[0, b] and x =a, y=0) and can
also implicitly be found in [T®%] and [8°]. The latter
means that elements of the vector [dqsh/dy] may be cou-
pled to each other. In the limiting case (noncurved or
piecewise-straight waveguide), [d¢"/d ] equals zero.

It is worth mentioning that there are two singular points
at x=ta where d,/d, becomes infinity. This results
from the fact that d¢ /d, at both sides tends to approach
infinity, which requires some precautions in the numerical
procedure.

From the transmission line equation (20), considering
the boundary conditions along the curved enclosure as well
as the continuity condition at the interface at y =0, an
inhomogeneous matrix equation is obtained:

[E]) _[[Z.] [Z.])([4]
[£]) V12 [ZA)\[2])

The submatrices [Z, ] and [Z,,] are diagonal, and [Z,,]
and [Z, ] are diagonal or subdiagonal, depending on the
lateral conditions in the transformed domain.

After transformation back into the original domain [5], a
considerably reduced matrix equation is obtained by set-
ting the tangential field components at the metallic strip to

Zer0:
(4]
[zw)](m)

From here the propagation constants are found for all
zeros of det{ Z(B)}.

In general, the number of lines necessary to accurately
analyze a given cross section depends on the finest details
to be resolved in the structure. Therefore, in the following
analysis the number of lines is determined by the strip /slot
dimensions. It was found that for a strip-type transmission
line a minimum of two ¥” lines and one ¥* line across the
strip width was necessary and- vice versa for slot-type
transmission lines.

(30)

ROTIN

(31)

III. NUMERICAL RESULTS

In order to examine the reliability and performance of
this modified approach, we have analyzed microstrip and
slotline structures in circular/elliptical waveguide hous-
ings. We have first analyzed the standard circular wave-
guide (WC-25, radius = 3.175 mm, f(TE,;) = 27.686 GHz)
and compared the numerical data with analytical results. It
was found that there is perfect agreement between the
numerical and the analytical solution of the fundamental
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Fig. 3. Unilateral finline in square and circular waveguide. WC-25 =
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Fig. 4. Dispersion of a slotline in a circular semiopen enclosure.

mode dispersion characteristic over the frequency range of
interest.

Then a comparison was made between a unilateral fin-
line in a square waveguide and a circular waveguide. It is
clear from Fig. 3 that the monomode range in a circular
housing greatly exceeds that in the square waveguide. Even
the monomode range in a rectangular waveguide is less
than in the circular case since the second higher order
mode starts to propagate at 42 GHz ( Ka-band) whereas in
the circular guide the second mode cutoff frequency is at
47 GHz. For the circular waveguide the modes shown in
Fig. 3 are obtained from electric wall symmetry. The HE1
mode can thus be traced back to the TE;; mode in the
empty waveguide. As expected, the HE1 mode is mainly
confined within the slot region of the guide and therefore
is strongly influenced by the slot width. For magnetic wall
symmetry no further modes were found up to 50 GHz.
This is in contrast to the results in a semicircular wave-
guide enclosure when the ground plane is removed (semi-
open). For this case Fig.4 shows three fundamental modes
close together having a cutoff frequency around 15 GHz.
Two of the modes show magnetic wall symmetry and one



1962
2.5 wC25 grounded
2.0 X,,x,y.,x--><~—><»—><~><~><--><—-x~-><~><~x-—><~><r—><—»><~><~><~><
0 T P PP .
£
f
1.5
1.0 ,
solid for the suspended
= 0.5
dotted for the shielded " m
0.5 symbol for w = 1.5 mm
0-0 T T T T 3
0 10 20 30 40 50
f(GHz)
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electric wall symmetry. The modes with magnetic wall
symmetry are virtually insensitive to variations in the slot
width whereby the third mode (electric wall symmetry)
cutoff frequency is reduced when the slot width decreases.
This indicates that this mode originates from the TE;
mode of the empty circular guide. For comparison, the
unilateral finline in a square waveguide with semiopen
boundary shows also three fundamental modes with the
same magnetic wall and electric wall symmetry [10]. Fig. 5
shows the suspended microstrip in a circular metallic en-
closure (WC25) and its grounded counterpart in a semicir-
cular metallic enclosure. As expected, the quasi-TEM mode
of the grounded structure is much higher, increasing fur-
ther for wider strip width. This is in contrast to the
suspended microstrip line, where the propagation constant
decreases for wider strip width. It should also be noted
that the higher order modes in the suspended case start to
propagate at much higher frequencies than for the same
transmission line in a rectangular waveguide. For instance,
in a Ka-band housing the first waveguide mode starts to
propagate around 20 GHz (for the planar structure sus-
pended in the E plane as well as the H plane) and in the
circular housing around 32 GHz. Fig. 6 shows even and
odd modes of a coplanar transmission line in a circular
and semicircular waveguide versus the slot width 4. It is
interesting to note that for the semicircular case and the
ground plane removed the odd mode shows a minimum
€. at d =1.5 mm. A comparative analysis for circular and
elliptical waveguide enclosures is shown in Fig. 7 for a
coplanar transmission line. It is obvious that the quasi-
TEM mode, the even mode, remains relatively undisturbed
by changing from one focal point into two (elliptical
waveguide), regardless of whether this change occurs in the
y or the x direction. The cutoff frequencies of higher order
modes, however, move up towards higher frequencies in
the elliptical waveguide. The interesting point is that by
changing b from 3.175 mm to b=1.905 mm the occur-
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rence of the first waveguide mode can be shifted 5 GHz
towards higher frequencies. Fig. 8 shows that there is no
noticeable effect on the quasi-TEM mode at higher fre-
quencies in a suspended stripline. Only at lower frequen-
cies does the difference between circular and elliptical
housings become visible.

IV. CONCLUSION

This paper introduced a modified approach to the
method of lines to allow the treatment of curved boundary
value problems. For the first time the MOL has been
applied to the analysis of a variety of quasi-planar trans-
mission lines in circular /elliptical and semicircular wave-
guides with partially open boundaries. Results have shown
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that some of the structures have potential applications at
millimeter-wave frequencies because losses in circular
waveguide enclosures are generally lower than in rectangu-
lar waveguides. A more detailed study including losses of
different modes, as well as the characteristic impedance, is
currently in progress. Our expérience so far has shown that
the method of lines is numerically more efficient than
other methods applicable to the same problem and that, as
evidenced by this paper, odd shaped boundary value prob-
lems can be handled quite easily.
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